Nonmuscle Myosin Light Chain Kinase: A Key Player in Intermittent Hypoxia‐Induced Vascular Alterations
نویسندگان
چکیده
BACKGROUND Obstructive sleep apnea is characterized by repetitive pharyngeal collapses during sleep, leading to intermittent hypoxia (IH), the main contributor of obstructive sleep apnea-related cardiovascular morbidity. In patients and rodents with obstructive sleep apnea exposed to IH, vascular inflammation and remodeling, endothelial dysfunction, and circulating inflammatory markers are linked with IH severity. The nonmuscle myosin light chain kinase (nmMLCK) isoform contributes to vascular inflammation and oxidative stress in different cardiovascular and inflammatory diseases. Thus, in the present study, we hypothesized that nmMLCK plays a key role in the IH-induced vascular dysfunctions and inflammatory remodeling. METHODS AND RESULTS Twelve-week-old nmMLCK+/+ or nmMLCK-/- mice were exposed to 14-day IH or normoxia. IH was associated with functional alterations characterized by an elevation of arterial blood pressure and stiffness and perturbations of NO signaling. IH caused endothelial barrier dysfunction (ie, reduced transendothelial resistance in vitro) and induced vascular oxidative stress associated with an inflammatory remodeling, characterized by an increased intima-media thickness and an increased expression and activity of inflammatory markers, such as interferon-γ and nuclear factor-κB, in the vascular wall. Interestingly, nmMLCK deletion prevented all IH-induced functional and structural alterations, including the restoration of NO signaling, correction of endothelial barrier integrity, and reduction of both oxidative stress and associated inflammatory response. CONCLUSIONS nmMLCK is a key mechanism in IH-induced vascular oxidative stress and inflammation and both functional and structural remodeling.
منابع مشابه
Regulation of actin microfilament integrity in living nonmuscle cells by the cAMP-dependent protein kinase and the myosin light chain kinase
Microinjection of the catalytic subunit of cAMP-dependent protein kinase (A-kinase) into living fibroblasts or the treatment of these cells with agents that elevate the intracellular cAMP level caused marked alterations in cell morphology including a rounded phenotype and a complete loss of actin microfilament bundles. These effects were transient and fully reversible. Two-dimensional gel elect...
متن کاملAlterations in expression of myosin and myosin light chain kinases in response to vascular injury.
Histochemical analysis of balloon-injured rat carotid arteries revealed a coordinated expression of nonmuscle myosin heavy chain-A and -B (NM-A and NM-B) in response to injury. Expression of these nonmuscle myosin forms shifts from the media to the adventitia and intima. In contrast, expression of smooth muscle myosin heavy chain-1 (SM-1) within the media is not altered, whereas smooth muscle m...
متن کاملThe mechanism by which RhoA regulates vascular reactivity after hemorrhagic shock in rats.
RhoA, an important member of the Rho family of GTPases, has been implicated in many cellular processes. Our pilot study found that RhoA participated in the regulation of vascular reactivity after shock, but the mechanism was incompletely understood. Whether RhoA regulates vascular reactivity through the Rho kinase-myosin light-chain phosphatase (MLCP) and Rac1-p21-activated kinase (PAK)-myosin ...
متن کاملNonmuscle myosin is regulated during smooth muscle contraction.
The participation of nonmuscle myosin in force maintenance is controversial. Furthermore, its regulation is difficult to examine in a cellular context, as the light chains of smooth muscle and nonmuscle myosin comigrate under native and denaturing electrophoresis techniques. Therefore, the regulatory light chains of smooth muscle myosin (SM-RLC) and nonmuscle myosin (NM-RLC) were purified, and ...
متن کاملTRPC-mediated actin-myosin contraction is critical for BBB disruption following hypoxic stress.
Hypoxia-induced disruption of the blood-brain barrier (BBB) is the result of many different mechanisms, including alterations to the cytoskeleton. In this study, we identified actin-binding proteins involved in cytoskeletal dynamics with quantitative proteomics and assessed changes in subcellular localization of two proteins involved in actin polymerization [vasodilator-stimulated phosphoprotei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2018